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1 Introduction

In the situation of interest, we want to classify an object into one of two cate-
gories, call them A and B, on the basis of the presence or absence of multiple
features, call them Fy, Fy,.... A specific feature F' is characterized by the prob-
abilities with which it occurs (denoted +F) or does not occur (denoted —F)
when the truth is actually A or B, respectively. In other words, we have the
ordinary 2 X 2 contingency table,
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A familiar example in the biomedical literature would have A be the presence
of a disease, B its absence, and the F;’s a list of screening questions or laboratory
test results. In such cases it is conventional to call p4 the feature’s sensitivity,
1 — pp the feature’s specificity. A perfect test has py = 1 and pp = 0.

Also conventional are the definitions of positive predictive value (+PV) and
negative predictive value (-PV),
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Evidently these are equivalent to the Bayesian odds ratios
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with the relationship being, in each case,
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The odds ratios tell us how to adjust our belief in A versus B when we are given
the outcome of some specific test or feature, i.e., given either +F or —F'. The
Bayesian “log odds” factors are of course the logarithms of the odds ratios.

2 Selecting Features by Odds Ratio Performance

Specifically, given multiple features that are independent (a big assumption!),
and given the prior probabilities Py(A) and Py(B), the overall Bayesian posterior
probability for the A : B odds ratio can be written as
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where i now labels the different features, and the Choose function chooses be-
tween its second and third arguments depending on whether its first argument
is +F or —F respectively. In words: We get the posterior log odds by starting
with the prior log odds, then adding either log(pa/pp) when a feature is +, or
else log[(1 —pa)/(1 — pp)] when a feature is —.

If we have many features available, we don’t necessarily need to try them
all. We can stop when L crosses a predetermined threshhold either positive or
negative, corresponding (e.g.) to a 99.9% or 0.01% posterior probability for A.

Now suppose that we have an essentially unlimited number of possible fea-
tures. We want to screen a large number of them on a set of learning data and
select the “best” ones to use on production data, or for some further statistical
process. This situation occurs if we are looking for features in DNA sequence
among an essentially infinite combinatorial set of possibilities.

What is the “figure of merit” by which we should select features in our
screen?

Evidently, we want features that will, on average, make £ reach its positive
or negative theshhold value as quickly as possible (i.e., with the smallest number
of features). Suppose, first, that A is true. Then the expectation value of the
change in £ from a given feature is
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because the result +F occurs with probability p4, —F with probability 1 — pa.
Using the inequality
log(l1+z) <z (7)



it is easy to show that the expression (6) is nonnegative for all p4 and pp in the
range (0, 1):
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The equality holds only when p4 = pp. This shows that any nondegenerate
contingency table moves £ in the right direction when A is true; and by sym-
metry this must be true for B as well. In other words, there are no “deceptive”
contingency tables, there are only more- or less-good ones.

Since we face a mixture of A and B cases, our overall figure of merit (F.M.)
must average over both contingencies. It is therefore

F.M. = P(A) [pA log <5—2) + (1~ pa) log G _m)]
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Here P(A) and P(B) = 1 — P(A) are the prior probabilities on A and B.
These will generally be Py(A) and Py(B), respectively. However, there could
also be situations in which a second batch of features are to be screened after
the application of a first batch, in which case P(A) and P(B) can be posterior
probabilities after the first batch.

Another way of looking at the priors P(A) and P(B) is that they define
a trade-off curve between false positives and false negatives. As P(A) tends
to 1, the figure of merit will select features with low false positive rates (B
misclassified as A) over features with low false negative rates (A misclassified
as B). As P(A) tends to 0, it is the opposite. In applications with different
consequences for false positives and false negatives, P(A) can be (arbitrarily)
set accordingly.

In principle, equation (9) solves our problem. We calculate F.M. for some
vast number of features, and subsequently use the ones with the largest F.M.
In practice two issues arise: (1) The features are not independent. This is a
well-known issue, and we have nothing to say about it in this note. (2) We
don’t actually know the probabilities p4 and pp for each feature. Rather, we
just have counts of how often the feature occurs in learning data of class A and
B. This is the issue that we focus on in the rest of this note.



3 Bayesian Estimate of F.M. from Counts

A finite set of learning data replaces the contingency table (1) with a table of
counts,
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Here N is the total number of A’s in the learning data, M, the total number of
B’s. The values of n and m may be small, or even zero. We want to estimate
pa and pp from these counts, and from priors on their probabilities. Note that
when we speak of the probability of a value pa, we mean the probability of a
probability, a very Bayesian concept. Lacking other information we take the
priors as uniform,

p(pa) =1, O0<pa<l
p(ps) =1, 0<pp<l1
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Now, dealing with just the A case (the B case being analogous), and applying
Bayes theorem,
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From the properties of the beta distribution we have the relations, should we
need them,
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In fact, even more ambitious integrals over equation (13) can be done ana-
lytically. In particular we can evaluate the expectation of our previous figure of
merit, F.M., over the probability distributions of p4 and pp. This turns out to
be
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where the different expectation values evaluate as
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Here z is either p4 or pp, j and J are integers, and H(n) is the harmonic sum,
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The asymptotic equality holds for large n with v being Euler’s constant, 0.57721 . . ..

Note that H(0) = 0.
Because of its asymptotic form, it is convenient to define the notation
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In this form it is evident how (19) becomes (9) in the limit of m,n, M, N all
large. Equation (19) is, however, the better figure of merit to use for screening

features, since it incorporates the appropriate corrections to (9) for small number
statistical fluctuations in the counts m,n, M, N.
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To use features selected in this manner, one wants to add not
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to the log odds, since p4 and pp are now not known, but rather

, 1—pa;
Choose {Fi,E [1og (pm)} ,E [log (ﬁ)]}
PBi 1—pBi
~hoose d B (MY (VALY (MY (N1
m n M—m N -—n

(21)

Note that this equation gives sensible (Bayesian) results, using H(0) = 0, even
when m or n is zero, that is, when a feature is not observed at all in the A or
B learning set.

4 Bayesian Correction for Multiple Hypotheses

Although equations (19) and (21) are correct for any single feature in the absence
of prior knowledge of its performance, they are not quite correct for features that
have been selected on the basis of performance on a learning set. The reason
is that features with favorable fluctuations in their counts on the learning set
will be preferentially selected over features with unfavorable fluctuations, so
that both the F.M. and the log odds increment are slightly overestimated for
selected features.

The most important manifestation of this bias occurs when we are screening
very large numbers of rare features, most of which are expected to be causally
unrelated to the classification of A versus B. Such features have py, = pg, but,
because of fluctuations in the counts, not necessarily n/N = m/M. If selected,
they will contribute spuriously to the log odds score.

A Bayesian way of looking at this is to assign to each feature ¢ a probability
Q; of being causal (pa # pp), and a probability 1 — Q; of being spurious
(pa = pp). Then the expectation value of the causal F.M. is equation (19)
multiplied by Q; (plus zero multiplied by 1 — @;), and similarly for equation
(21).

So the question becomes: how do we estimate @ (omitting, for now, the
index ¢) from the data?

Start with a prior Qg and convert it to a prior odds ratio Qo/(1 — Qo). Next
multiply the prior odds ratio by the odds ratio of the evidence,

[ [ P(Data |pa,pp)dpadpr
| P( Data |pa)dpa
S G CDpa( = pa)N " pE (1 — pp)M ™ dpadps
J GO (1 = pa)N+tM=n=mdp,
_ Bn+1,N—-n+1)B(m+1,M —m+1)
Bn+m+1,N+M-n—m+1)

(22)




where B is a beta function.

While integrating over different numbers of parameters (p4 versus p4 and
pp) may seem odd to the uninitiated, this is in fact the standard Bayesian
technique for comparing models with different numbers of parameters, yielding
what are often called “Ockham factors”. See, e.g., Sivia (1996), Chapter 4.

Finally, convert the resulting odds ratio back to a probability @,

O.R.
OR.+1

When M and N are large, and m/M and n/N are sensibly different, then
@ is exponentially close to 1, even as the prior ranges over many orders of
magnitude. This indicates that the feature is surely causal. When M and N
are moderate or small, then nontrivial values of ) are obtained. For example,
when M = N = 30 and m = n = 15, the evidence odds ratio (22) is 0.312, giving
a modest discounting of the causal case — unless, of course, it is overwhelmed
by the prior. When M = N = 30, m = 2, n = 20, on the other hand, (22) is
6.9 x 104, indicating strong evidence in favor of the causal case.

When one is screening combinatorially large numbers of possible features,
it is reasonable to set the prior (g quite small, for example on the order of
the ratio of the number of features sought to the number of features screened.
Strong features will survive, with @@ =~ 1, even such a small prior. And, if there
are no such strong features, then weak features will be appropriately ordered by
their relative evidence factors, sharing the common prior Q).

One can also think of applications where it is logical to set the prior Qo
close to unity, for example in evaluating features that are known on other ex-
perimental grounds to be associated with the classification of A versus B. Then,
one wants to use the evidence ratio only to “knock out” features whose counts
strongly imply pa = pp in a Bayesian sense.

Q= (23)
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